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Abstract

Knowledge graph embedding (KGE) aims to represent entities and relations in a
low-dimensional continuous vector space. Recent KGE works focus on incorporat-
ing additional information, such as local neighbors and textual descriptions, to learn
valuable representations. However, the non-uniformity and redundancy hinder the
effectiveness of entity features from those information sources. In this paper, we
propose a novel end-to-end framework, called composite neighborhood embedding
(CoNE), utilizing composite neighbors to enhance the existing KGE methods. To ease
past problems, the new composite neighbors are gathered from both entity descriptions
and local neighbors. We design a novel Graph Memory Networks to extract entity
features from composite neighbors, and fulfill the entity representation in the target
KGE method. The experimental results show that CoNE effectively enhances three
different KGE methods, TransE, ConvE, and RotatE, and achieves the state-of-the-art
results on four real-world large datasets. Furthermore, our approach outperforms the
recent text-enhanced models with fewer parameters and calculation. The source code
of our work can be obtained from https://github.com/KyneWang/CoNE.
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1 Introduction

Knowledge graphs (KGs) have attracted widespread attention in the past few years
with their enormous potential in artificial intelligence (AI) applications [8]. In most
KGs, knowledge facts are stored as triples in the form of (head entity, relation, tail
entity), e.g., (‘Apple Inc.’, ‘Operating Systems Developed’, ‘Mac OS’). Despite that
millions of facts have been extracted from the real world, the construction of large
scale knowledge graphs is still confronted with incompleteness and sparseness [27].

In order to predict new facts and complete KGs automatically, knowledge graph
embedding (KGE) has been proposed [21]. Different from normal graph embeddings,
KGE methods focus on multi-relational graphs and learn the representation of entities
and relations in a low-dimensional continuous vector space [24]. As one of the typical
methods, TransE [3] treats every relation as a translation between head and tail entities.
However, most of KGE methods solely learn from each triple in the KG, so they often
suffer a decline in performance when processing entities with few triples [18]. To
address the sparsity problem, some methods have been proposed to enhance KGE by
utilizing textual descriptions or local neighbors [31,32].

Although the two kinds of additional information are valid, there are three problems
when utilizing them in the engineering practice:

— The information redundancy of entity descriptions Textual descriptions often con-
tain hundreds of words, in which unnecessary words dilute the entity features and
hinder the expression of potential relationships [6]. Recent work intercepts the
long text to a fixed length (usually the first 20 words) [31] but causes a loss of the
entity semantic meaning.

— The unbalanced distribution of local neighbors Because of the power-law distri-
bution of entities in real-world KGs, some commonly-used entities have hundreds
of neighbors, which lead to heavy computational pressure to generate valuable
representation [19]. Meanwhile, there is inevitably a long tail of sparse entities,
which cannot gather enough information from the local neighbors [18].

— Different features provided by the two parts The features provided by local neigh-
bors depend on the relation types in the KG. Differently, people edit the textual
description to express the entity’s meaning comprehensively, in which there may
be other similar entities that have an indirect relation with the given entity.

To solve these problems, we propose ‘Composite Neighbors’, new additional infor-
mation for KGE methods combining both local neighbors and entity descriptions.
Figure 1 shows the composite neighbors related to one triple in Freebase [1], and
the correlations with two past additional information. To reduce redundancy of entity
descriptions, we first extract entities mentioned in a long text, called ‘semantic neigh-
bors’. Then, the composite neighbors of an entity contain a limited number of entities
selecting from both local neighbors and semantic neighbors. For commonly-used enti-
ties, composite neighbors focus on the overlap of the two neighbor sets, rather than
all hundreds of neighbors. For sparse entities, the two parts of neighbors complement
each other, which can alleviate problems caused by missing data on one side.
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Fig. 1T The composite neighbors of two entities in a triple extracted from entity descriptions and local
neighbors. Each entity has a hand-edited text to describe the entity meaning, and its local neighbors are the
other entities having direct connections with it in existing KG triples

In this paper, we propose a novel encoder-decoder framework, named Composite
Neighborhood Embedding (CoNE), which utilizes composite neighbors to enhance
the existing KGE methods. To learn an entity’s representation from its composite
neighbors, a novel encoder model, Graph Memory Networks (GMN) is designed.
Compared with general graph convolutional networks, the GMN encoder utilizes key-
value memory units and multi-layered attention to avoid redundant calculations and
improve the reasoning capability. After that, the entity representation enhanced by
the GMN encoder is applied in a KGE model. In the experiements, we verify the
performance of CoNE on three different kinds of KGE models, including TransE
[3], ConvE [4], RotatE [23]. Experimental results on link prediction tasks show that
our model effectively enhances the mainstream KGE methods with different score
functions. The CoNE-TransE model outperforms existing models exploiting entity
descriptions, while needs fewer parameters and calculation. The CoNE-RotatE model
outperforms all the baseline methods on four popular datasets.

The rest of our paper is organized as follows. We first review the related works
in Sect. 2. In Sect. 3, we present the technical details of the CoNE model, including
composite neighbors, the GMN encoder and the KGE decoder. Then we report our
extensive experimental studies to validate the CoNE model in Sect. 4 and conduct
specific analysis in Sect. 5. Finally, we offer some concluding remarks in Sect. 6.

2 Related work

In this section, we briefly overview the related works on knowledge graph embedding
(KGE), and the approaches exploiting additional information for KGE.
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2.1 Knowledge graph embedding

According to the model architecture, recent KGE methods can be broadly separated
into three categories [10], including Translational Distance Models, Matrix Factoriza-
tion Models, and Neural Networks Models.

Translational Distance Models compute the distance between two entities to mea-
sure the plausibility of a triple, represented by TransE model [3]. To solve flaws of
TransE, some variants such as TransH [28], TransR [12] and TransD [9] are proposed.
Meanwhile, Matrix Factorization Models formulate KGE models as three-way ten-
sor decomposition. RESCAL [17] model utilizes three-way factorization over each
relational slice of knowledge graph tensor. DistMult [33] and ComplEx [26] simplify
it by introducing diagonal relation matrices and complex-valued matrices. The latest
model, RotatE [23] is inspired by Euler’s identity and can take relation as a rotation
between entities. With the development of deep learning, Neural Networks Models
have achieved remarkable performance in recent KGE studies, such as ConvE [4],
ConvKB [15], and CapsE [16], they take entities and relations into deep neural net-
works and compute a semantic matching score. As a representative model, ConvE
reshapes and concatenates the entity and relation embeddings, and utilizes a multi-
layer convolutional network model for link prediction.

These three categories of KGE models have shown great performance on knowl-
edge graph completion and link prediction tasks. The TransE model is highly efficient
and commonly used, but it fails to encode symmetry relations. Earlier factorization
models cannot infer the relation composition pattern, while RotatE fills this gap. Com-
pared with those Linear or bilinear models, neural network models like ConvE usually
achieve better performance but inevitably introduce additional parameters. In our work,
we focus on proposing a generalized framework that integrates Composite Neighbors
into KGE, which can enhance all three categories of models.

2.2 Incorporating additional information in KG

Additional information as a supplement of entity representation, can effectively alle-
viate the sparsity problem of KGE. Facing various information forms, different kinds
of encoders based on deep neural networks have been utilized. In terms of entity
descriptions, Xie et al. [31] jointly learn KG embedding by using Convolutional Neu-
ral Networks (CNNs) to process entity descriptions. Xu et al. [32] utilize Recurrent
Neural Networks (RNNs) to integrate structural and textual information. In terms of
local neighbors, Feng et al. [7] take the target entity and directed linked entities as
neighbor context, combined with path context and edge context. Shi et al. [20] extract
the outgoing edges of an entity, along with the entities they can reach, as neighbor
information to rich entity representation.

To design an encoder for composite neighbors, some recent research work has
inspired us. Graph Convolutional Networks (GCNs) [5], as the neighborhood message
passing methods, have attracted much attention in the field of graph representation
learning [30]. Utilizing neighborhood information for link prediction, R-GCNs [19] is
proposed to deal with highly multi-relational data such as knowledge graphs. Deepak
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et al. [14] utilize Graph Attention Networks to extract entity features from the n-hop
neighborhood, but introduce a large number of parameters and heavy calculations.
Meanwhile, Weston et al. [29] propose Memory Networks, which is designed for
natural language processing tasks, reasoning on non-writable memory units to build a
hierarchical memory representation. End-to-End Memory Networks (MemN2N) [22]
improve Memory Networks to support end-to-end training, and operate via a multi-
layered attention mechanism in which relevant memory pieces are adaptively selected
based on the input query.

In our work, we design a novel Graph Memory Networks for composite neighbors
encoding, which is inspired by some characteristics of MemN2N. Based on GCNs, we
reduce its memory overhead by replacing the huge adjacency matrix with the memory
units in MemN2N. Besides, the multi-layered attention mechanism is utilized for
hierarchical reasoning in GMN encoder.

3 The CoNE model

3.1 Problem formulation and notations

We first formulate the link prediction task and introduce the notations used in this
paper. Throughout this paper, we use bold uppercase characters to denote matrices

and bold lowercase characters denote vectors. The notations used in this paper are
illustrated in Table 1.

Table 1 Commonly used notations and terminologies

Items Descriptions

g A knowledge graph

T The set of triples in a KG

eeE,reR The set of entities and relations in a KG

(ep, 1, er) A triple of head entity, relation and tail entity
(eqg,7q) The input query of link prediction task

ec A candidate of the missing entity

N(e) The composite neighbors of e

(k,v) € RZ The key-value memory unit of a neighbor
e,reR? The real-number embedding vector of e and r
F,r,t) Score Function of a KGE Model

L(®) Loss function

[ 1l2 L1 or L2 normalization

[h; 7] Vectors/matrices concatenation

d The dimension of the embedding vector

K The maximum neighbor number of an entity
L The layer number of multi-layered attention
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Fig.2 The general architecture of the CoNE model

A knowledge graph (KG) is represented as G = (E, R, 7) where E is the set of
entities, and R is the set of relations. 7 = (ej, r, ¢;) denotes the set of factual triples
in G, where r € R is arelation, ej,, ¢; € E are the head entity and tail entity of a triple.
Given two items (e, r4)of a triple, the link prediction task aims to predict the missing
tail or head entity. The missing entity e, is selected from the total entity set E. We define
the composite neighborhood of an entity e as N(e) = {n1,na2,...,ng}(n; € E),
and its maximum length is denoted as K. Semantically related to e, each composite
neighbor is extracted from existing triples 7" or entity descriptions.

3.2 Approach overview

For link prediction task, we propose a novel encoder-decoder framework, named Com-
posite Neighborhood Embedding (CoNE), shown in Fig. 2. Previous KGE models
represent entities and relations in a low-dimensional vector space and measure the
plausibility of each candidate triple, while the CoNE aims to supplement the entity
information through its composite neighbors to improve the prediction accuracy of
those models. Following an encoder-decoder architecture, the CoNE framework con-
sists of three major components as follows:

— Composite Neighbors are the additional information of CoNE. To gather composite
neighbors for a given entity, we first generate two sets of neighbors from KG
triples and entity descriptions respectively. Then we sample a limited number of
composite neighbors from the two sets. This procedure will be detailed in Sect. 3.3.

— Graph Memory Networks Encoder is utilized to extract entity features from
composite neighbors. We utilize key-value memory units to process composite
neighbors, while the multi-layered attention mechanism in GMN can capture hid-
den correlations among neighbors based on a given relation. We will detail the
GMN encoder in Sect. 3.4.

— KGE Decoder employs an existing KGE model to conduct the link prediction. To
show the general applicability of CoNE, we apply three different models, including
TransE, ConvE, and RotatE. The details of the KGE decoder and training process
will be discussed in Sect. 3.5.
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The main process of CoNE is as follows: Given the input query (ey, r4), we first get the
entity e,’s composite neighbors N (e, ), and generate an enhanced entity representation
in the GMN encoder. Finally, the new entity representation is used in the KGE decoder,
to predict the missing entity of the query.

3.3 Composite neighbors

In this section, we introduce the composite neighbors, a new kind of additional infor-
mation for KGE. By extracting representative entity neighbors from KG triples and
entity descriptions, the composite neighbors can provide richer features for the entity
representation, and overcome the problems of redundancy and unbalanced distribu-
tion. To generate composite neighbors for an entity e, a two-step process is proposed
illustrated in Fig. 3.

First, two sets of neighbors are extracted from KG triples and entity descriptions
respectively. In the neighbor set from KG triples, the local neighbors include the
entities having at least one triple with e in the KG. As shown in Fig. 1, the local
neighbors of ‘Apple Inc.” include ‘Steve Jobs’, ‘IOS’ and so on. In the neighbor set
from entity descriptions, we extract mentioned entities in the e’s textual description
by completely matching their names. Those semantic neighbors are defined as entities
whose name appears in e’s description, and entities whose description mentions the
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name of e. For example, the ‘Operating System’ is mentioned in the textual description
of ‘Apple Inc.’, so they are semantic neighbors for each other.

After that, at most K entities are sampled from two sets to make up the composite
neighbors of e. As some entities own hundreds of neighbors, we first select the neigh-
bors that appear in both sets simultaneously. For the entity ‘Apple Inc.’, its neighbors
‘Software’ and ‘OS X’ would be selected in this way. Then, the rest of the composite
neighbors are filled by randomly sampling.

The aforementioned process is designed to overcome the problems in the entity
descriptions and local neighbors. To reduce the redundant part, we only select a small
number of entities from long textual descriptions. To address the unbalance problem,
we limit the maximum number of composite neighbors, and then increase the neighbors
of sparse entities by combining two neighbors sets. Note that, the composite neighbors
can be applied easily in different KGs, as long as entity names and descriptions are
available.

3.4 Graph memory networks encoder

Given an input query (ey, 74), the encoder aims to generate the ¢,’s representation by
aggregating its own features eq and composite neighbors’ features. Various neural net-
work models, such as CNNs and RNNs, have been used in entity description encoding
[31,32]. Different from word sequences in those descriptions, the neighbor data is not
chronological and has no spatial order. As the entity and its composite neighbors can
be structured in an undirected graph, GCN-based encoder is relatively suitable to learn
node representations from neighborhood information.

However, we argue that the traditional GCN model cannot efficiently encode com-
posite neighbors in the KG. (1) As the size K of composite neighbors is much less than
the entity amount, the adjacency matrix in GCN is huge and extremely sparse. The
computation related to it leads to huge memory overhead. (2) Composite neighbors
belong to 1-hop neighborhood, and cannot be utilized in multi-layer GCNs. How-
ever, a single-layer GCN model lacks enough fitting capability to process large-scale
knowledge graphs. (3) Traditional GCN models usually learn representation in the
graph inside, and have no operation to involve the input query. For a query (ey, 7¢),
GCN models only process the e,’s neighborhood but the relation 7, is ignored.

To tackle the problems in the GCN model, we propose an improved GCN model for
composite neighbors encoding, named Graph Memory Networks (GMN). The illus-
tration of the GMN encoder is shown in Fig. 4. Inspired by Deep Memory Networks
[22], we utilize external memory units and the multi-layered attention mechanism.
The former replaces the adjacency matrix to record e, ’s neighbors in a dense matrix,
and then represent each neighbor as key-value vectors. The latter, multi-layered atten-
tion mechanism has multiple attention layers to learn representation with deep-level
abstraction. Besides that, to solve the third problem, we improve the attention layer to
assign different attention scores to neighbors under different relations.

Specifically, to generate a new representation of e, under the specific relation
rq4, we first represent the input items as low-dimensional vectors. we perform an
embedding operation to represent ey, 1, as the entity and relation embedding vec-
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tors denoted as eq, rq € R¢. And the hyperparameter d is the embedding dimension.
The composite neighbors of e, are N(e;) = {ni,nz,...ng}. Instead of using
adjacency matrix like GCNs, those neighbors are represented as discrete memory
units M(e;) = {(ki, vi)}(0 < i < K). Each memory unit is a key-value pair
(ki, vi) = (Wknj, Wyn;), in which the two item share one d-dimensional embedding
vector nj. Then two projection matrices Wy, Wy € R?*4 transform n; into different
vector spaces.

Given the vectors eq, rq and M(e,), a L-layered attention mechanism is utilized
to extract the potential features among composite neighbors. The input u® of the first
attention layer is eq, then the output of the layer u' is input into the next layer. So that
the entity vector can be iteratively updated by neighbor vectors.

In the [-th attention layer (0 < [ < L), the input vector u'~! is first processed
by a linear transformation followed by application of the LeakyRelu non-linearity, as
shown in Equation 1.

i = LeakyReLU (Wiinu!~! + byjp), (1)

where Wiin € R4*?, by;, € R?. Then, the attention score for each neighbor n;
is defined as p;, which is computed by the concatenation of the key vector of the
neighbor k;, the projected input @ and the relation vector rq:

gi = LeakyReLU (Wagl[ki; @; rq] + basr), 2

pi = Softmax(g;)) = —p—,
SR exp(g))

where Wy € R1*24 3. € Rl To get the relative attention scores p, the Softmax
function is applied over g of all neighbors. As the relation vectors are involved in
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attention computing, neighbors can gather different attention scores under different
relations.

With p as weights, the value vectors {v;j} of neighbors are summed as the neighbor
representation. And the output of the /-th layer u’ is the addition of the neighbor
representation and the updated entity vector @, as shown in Eq. 4. To keep the gradient
stability in iterations, we constrain u’|l, = 1.

K
ul=ﬁ+2pixvi 4)
i=1

Finally, the output of the last L-th layer u” is added with the initial entity vector eq
through a gating mechanism [32], which using trainable vectors as weights to adjust
the proportions of two parts according to different entities. Differently, to reduce the
space complexity, we use scalar weights to replace vectors. Each entity is assigned a
trainable scalar weight g, € [0, 1]. As shown in Eq.5, the final output vector €g is
the enhanced entity representation, which utilized in the KGE decoder to perform link
prediction.

€4 =8, Oeq+ (1 —g,) Ou" (5)

Compared with original end-to-end memory networks (MemN2N) [22], the GMN
model has several differences. First, GMN is designed to process graph data instead
of natural language, and the position encoding in MemN2N is deprecated. Besides,
the key-value memory units in MemN2N utilize different parameter matrices which
leads to high space complexity, while GMN fixes it by sharing the same parameters.
In addition, the relation vector is involved in the attention function of GMN, which is
ignored in MemN2N.

Take the triple (‘Apple Inc.’, ‘operating systems developed’, ‘Max OS’) in Fig. 1
as an example. The GMN encoder aims to learn a representation of ‘Apple Inc.’
under the relation ‘operating systems developed’. To simplify the description, we only
consider about two neighbors, ‘Software’ and ‘OS X’. In a single attention layer, the
relation vector is computed with each neighbor vector. As an operating system, ‘OS
X’ is expected to get a higher attention score than ‘Software’. Thus, more features
about ‘OS X’ would be added into the entity representation. With the multi-layered
iteration, the proportion difference between ‘OS X’ and‘Software’ would be more
obvious. Finally, as the missing entity ‘Mac OS’ is tightly related to ‘OS X’, the new
entity representation enhanced by the ‘OS X’ neighbor can fit with ‘Mac OS’ more
easily.

3.5 KGE decoder and training objective

In our CoNE framework, the KGE decoder can employ different KGE models to
perform the link prediction. To predict the missing entity, a score function F (ey, 74, ec)
is used to measure the potential triple. However, different from existing methods input
entity and relation embedding vectors directly into the score function, the KGE decoder
utilizes the encoder’s output €; as the entity representation.
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Table 2 The score functions and loss functions of three KGE models, where y > 0 is the margin value, o
denotes the element-wise Hadmard product, * denotes the convolution operator, € denotes a 2D reshaping
of e, vec(-) denotes the 1D reshaping operator, €€ denotes a complex-number vector, o (-) is the sigmoid
function. N is the number of fact triples 7', and N7~ is the number of negative samples 7’

Model  Score function Loss function

TransE  Fr = —|lep +1 — e¢]| Ly =Y er e max0,y — F(1) + F({t'))
ConvE  Fc = f(vec(f([ep; Tl *w)W)ey Lo = 7% YierUog(F®) + Y yrep log(1 — F(t)))
RotatE  Fp = —|lef or® —ef]| Lr = =) erlogaly — F@) +

~ Wy Lrerr 1ogo (F() =)

In the training procedure, given a set of fact triples 7 U 7', we use the Bernoulli
sampling strategy described in [28] to generate the negative sampling set T”. The triple
t = (en, r, e;) € T denotes the positive sample, while the negative sample is denoted
as t’ € T'. The training objective is to learn effective representations to divide the
positive and negative samples.

We employ three KGE models as the KGE decoder, including TransE, ConvE, and
RotatE. We follow the score functions and loss functions described in original literature
of those KGE models, as shown in Table 2. For TransE decoder, we minimize a hinge
loss using stochastic gradient descent (SGD), and we apply the Adam [11] optimizer
to minimize the loss functions of ConvE and RotatE.

4 Experiments

We describe experimental settings and report empirical results in this section. We
evaluate our Composite Neighborhood Embedding (CoNE) model in the KG link
prediction task, and verify the effectiveness of the Composite Neighbors and Graph
Memory Networks Encoder. All experiments are performed on Intel Core i7-7700K
CPU @ 4.20 GHz and NVIDIA GeForce GTX 1070 GPU, and implemented in Python
using Pytorch.

4.1 Experimental setup
4.1.1 Datasets and hyperparameter settings

We introduce four commonly-used datasets used in our experiments. FB15k [3] is
extracted from Freebase in which a large fraction of content describes knowledge
facts about movies, actors, awards, and sports. WN18 [2] is a subset of the English
lexical database, WordNet [13]. However, the drawback of these two datasets is that
many test triples can be obtained simply by inverting triples in the training set. To solve
this test leakage problem, FB15k237 [25] and WN18RR [4] are created by removing
inverse relations respectively. Statistics of the four datasets are given in Table 3. ‘#Rel’
and ‘#Ent’ refer to the number of relations and entities in the dataset, and the other
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Table 3 Statistics of datasets used in experiments

Dataset #Rel #Ent #Train #Valid #Test

FB15k 1345 14,951 483,142 50,000 59,071
FB15k237 237 14,541 272,115 17,535 20,466
WNI18 18 40,943 141,442 5000 5000
WNISRR 11 40,943 86,845 3034 3134

metrics refer to the number of triples in three subsets. The entity descriptions of those
datasets are publicly available. We build the composite neighbors from the triples in
the training set and the entity descriptions for each dataset.

We select the hyperparameters of our model via grid search according to the metrics
on the validation set. We select embedding dimension d among {100, 200, 400, 600},
learning rate A among {0.0001, 0.0005, 0.001}, the margin y among {3, 6, 9, 12, 24},
the maximum number of neighbors K among {5, 10, 20} and the number of layers L
for the GMN encoder L among {1, 3, 5}. We keep the original settings of employed
KGE models as many as possible. To speed up the convergence and avoid overfitting,
the entity embedding and relation embeddings are initialized by pre-trained results
of KGE decoder. The neighbor embeddings and the rest parameters are initialized by
randomly sampling from a uniform distribution in [—0.01, 0.01].

4.1.2 Tasks and evaluation metrics

As a main task of knowledge graph completion, link prediction aims to predict the
missing ey, or e; in a triple (ey, r, ;). Different from other predicting tasks requiring
the best answer, this task focuses on ranking a set of candidate entities in KG.

We adopt three evaluation metrics as follows: (1) Mean Rank (MR), the average
rank of the test triples, (2) Mean Reciprocal Rank (MRR), the average inverse rank of
the test triples, and (3) Hits@N, the proportion of correct entities ranked in top N (N =
1, 10). Lower MR, higher MRR, and Hits @N should be achieved by a good embedding
model. By following the previous work [3], there are two evaluation settings, ‘Raw’
and ‘Filter’. The former ranks in the whole entity set, while the latter removes the other
candidate triples appearing in datasets before ranking. If no comments, the following
results are in the ‘Filter’ setting by default.

4.2 Experimental results

4.2.1 Results of link prediction task

In the link prediction task, we compare CoNE with several recent KGE methods to
validate our model’s performance. The evaluation results on the four datasets are

shown in Tables 4 and 5. ‘CoNE-X’ represents the results of CoNE applying different
decoders, including TransE, ConvE, and RotatE.
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Table 4 Link prediction results on FB15k and WN18

Methods FB15K WNI18
MR Hits@101 MRR4 MR Hits@101 MRR%
Raw Filter Raw Filter

TransE 70 43.4 61.8 30.7 312 76.3 91.1 44.8
DisMult 120 50.0 84.2 70.5 901 81.4 93.6 82.2
ComplEx 133 49.2 82.5 72.4 895 83.9 94.4 94.1
ANALOGY 121 50.5 84.3 72.2 788 843 94.7 94.2
ConvE 51 52.5 83.1 66.0 360 80.5 95.6 94.3
RotatE 57 50.2 84.6 70.7 432 81.0 95.3 93.8
CoNE-TransE 69 50.5 78.5 54.6 299 79.6 94.2 49.6
CoNE-ConvE 50 532 87.2 73.7 337 80.9 95.7 94.6
CoNE-RotatE 32 51.7 88.6 72.0 252 82.3 96.8 94.6

Best score is given in bold

Table 5 Link Prediction Results on FB15k237 and WN18RR

Methods FB15K237 WNI8RR
MR| MRR{ Hits@104 Hits@l4 MR} MRR{ Hits@10 Hits@14

TransE 221 242 42.4 16.6 3793 18.0 45.7 1.3

DisMult 309 224 383 14.6 5110  43.0 49.0 39.0
ComplEx 289 22.7 39.1 14.5 5261  44.0 51.0 41.0
ANALOGY 309 22.7 38.7 14.8 8982 392 41.0 38.4
ConvE 244 31.6 50.1 23.7 4187  43.0 52.0 40.0
RotatE 177 33.8 533 24.1 3340 47.6 57.1 42.8
CoNE-TransE 211 30.6 48.5 21.7 3542 227 50.2 6.4

CoNE-ConvE 187 334 51.5 24.6 4165 455 52.7 423
CoNE-RotatE 147 35.0 53.6 258 2776 494 58.2 451

Best score is given in bold

From the experimental results, we can see some obvious improvements of these
KGE methods after enhanced by our proposed CoNE model. As for the TransE-
based model, the Hits@10 on FB15k-237 increases from 42.4 to 48.5%, while the
Hits@10 on FB15k also rises from 61.8% to 78.5% in filter mode. Meanwhile, the
MRR of the CoNE-ConvE model on FB15k increases from 66.0 to 73.7%, and the
Hits@1 on WN18RR rises from 40.0 to 42.3%. Especially, the CoNE-RotatE model
outperforms the state-of-the-art results of RotatE in FB15k-237 and WN18RR. As
the three decoders belong to different categories of KGE methods, the results clearly
demonstrate that our proposed method has the capability of enhancing different kinds
of KGE models.

Compared with other KGE methods, CoNE-ConvE receives the best MRR and
Hit@ 10 metrics on FB 15k, while CoNE-RotatE achieves most of state-of-the-art MRR
and Hits@N on 4 datasets. As shown in Table 5, the CoNE-TransE achieves 94.2% of
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Table 6 Comparison results of CoNE and two text-enhanced methods on FB15k and WN18

Type Method FB15K WN18
MR Hits@10 MR Hits@10
Baseline TransE 70 61.8 312 91.1
Entity Descriptions DKRL (CNN) 91 67.4 - -
Jointly (CBOW) 92 67.4 130 89.9
Jointly (LSTM) 90 69.7 95 91.6
Jointly (Att_LSTM) 73 75.5 123 90.9
Composite Neighbors CoNE (CBOW) 80 72.7 351 92.5
CoNE (GCN) 73 76.5 309 93.6
CoNE (GMN) 69 78.5 299 94.2

Best score is given in bold

Hits@ 10 on WN18 outperforming 93.6% of DistMult, which is rarely that a TransE-
based model defeats matrix factorization models in this dataset. Besides, the original
ConvE on FB15k dataset is weaker than ComplEx and ANALOGY, while CoNE-
ConvE outperforms both models on all metrics.

4.2.2 Comparison between composite neighbors and entity descriptions

In this section, we attempt to answer the following two questions:

Q1: As the KGE additional information, whether Composite Neighbors are better
than entity descriptions?

Q2: What is the effect of using GMN encoder in CoNE compared to other encoders?

To answer the Q1, we select two comparison methods DKRL [31] and the Jointly
model proposed by Xu et al. [32]. As both of them utilize entity descriptions to enhance
the TransE model, we also use the TransE-based CoNE model in this experiment, called
‘CoNE (GMN)’. To answer the Q2, CoNE (GMN) is compared with two CoNE variants
with different encoders: (1) CoNE (CBOW), using CBOW encoder which generates
representation by summing up all neighbor vectors; (2) CoNE (GCN), using the Graph
Convolutional Networks (GCNs) as the encoder. Besides that, DKRL employs a CNN-
based encoder with two 1D convolutional layers and two max-pooling layers, while
the Jointly model utilizes three different encoders. We denote them as ‘DKRL (CNN)’,
‘Jointly (CBOW)’, ‘Jointly (LSTM)’ and ‘Jointly (Att LSTM)’.

The experimental results on FB15k and WN18 datasets are shown in Table 6. CONE
(GMN) obtains the best scores of Hits@ 10 on two datasets and the lowest MR score
on FB15k, while Jointly models show relatively lower MR scores on WN18. Using
the same simple encoder, the variant model CoNE (CBOW) achieves better perfor-
mance than Jointly (CBOW) and Jointly(LSTM). It proves that composite neighbors as
additional information are better than entity descriptions. Besides, the CoNE (GMN)
outperforms than the other 2 variants on two datasets. It verifies that the GMN encoder
has better capability for composite neighbors encoding, and proves the effectiveness
of our improvements in GMN compared with GCN encoder.
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Table 7 Comparison results of

. - . Metric FB15K237 WNI18RR
Composite neighbors with - -
different length and the other MR Hits@10 MR Hits@10
two kinds of neighbors

RotatE (Baseline) 177 53.3 3340 57.1
CoNE (ComNei-3) 172 519 2791 57.1
CoNE (ComNei-5) 170 52.5 2718 57.9
CoNE (ComNei-10) 169 52.7 2702 584
CoNE (ComNei-20) 147 535 2667 58.2
CoNE (LocNei-20) 168 53.0 2707 57.4
CoNE (SemNei-20) 177 52.2 3126 55.1

Best score is given in bold

4.2.3 Comparison of different kinds of neighbors

In this section, we will answer the other two questions:

Q3: Does the sparse degree of Composite Neighbors influence the performance of
link prediction?

Q4: How does Composite Neighbors perform on link prediction compared to two
single-source neighbors?

We experiment CoNE-RotatE model with different neighbor information in two
relatively sparse datasets, FB15k-237 and WN18RR. For Q3, we compare compos-
ite neighbors with different maximum length K, and the corresponding models are
denoted as ‘CoNE (ComNei-K)' (K € [3, 5, 10, 20]). The fewer neighbors of each
entity lead to the sparser additional information. For Q4, CoNE (LocNei-20) and
CoNE (SemNei-20) are employed, using local neighbors from KG triples and seman-
tic neighbors from entity descriptions respectively. Neither these neighbor set is longer
than 20.

As shown in Table 7, CoNE (ComNei-20) obtains the best Hits @ 10 on two datasets
and the lowest MR score on FB15k-237, while its MR in WN18RR is sightly weaker
than CoNE (ComNei-10). As the number of neighbors decreases, the Hit@ 10 value
drops gradually, even weaker than the original RotatE model’s. It indicates the negative
effect of sparse additional information on link prediction. In spite of this, the MR
metrics of CoONE (ComNei-3) are still better than RotatE on two datasets. Besides that,
CoNE (ComNei-20) outperforms those using single-source neighbors significantly,
which proves the necessity to integrate two neighbor sets. Using local neighbors is
relatively better than semantic neighbors, the reason might be that the local neighbors
are directly from KG triples.

4.2.4 Detailed results by relation categories

This experiment aims to explain why CoNE can improve the performance of existing
KGE models. Considering the drawbacks of KGE methods in dealing with ‘1-to-N’,
‘N-to-1’, and ‘N-to-N’ relations, we verify the Hits@ 10 metrics of the CoNE model
on different relation categories and compare CoNE with the original KGE methods
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Table 8 Detailed results by category of relation on FB15k

Tasks relation category  Prediction head (Hits@10) Prediction tail (Hits@10)
I-to-1  1-to-N N-to-1 N-to-N  I-to-1  1-to-N  N-to-1  N-to-N

TransE 70.4 68.0 39.3 51.7 71.7 38.2 64.8 53.5
ConvE 80.4 95.4 61.7 83.7 79.3 67.7 96.1 86.6
RotatE 93.0 97.3 57.1 84.4 93.8 80.3 97.6 88.5
CoNE-TransE 85.3 96.4 583 80.1 82.4 65.2 95.6 83.9
CoNE-ConvE 85.7 96.7 67.7 87.5 85.3 79.6 97.3 90.3
CoNE-RotatE 94.3 974 67.2 85.6 95.2 858 97.8 89.7

Best score is given in bold

on FB15k dataset. Mapping properties of relations follows the same rules in [3]. The
detailed results on FB15k are reported in Table 8.

In all four relation categories, the CoONE model achieves a promising performance
based on original KGE models. The CoNE-TransE model outperforms the baseline
by an almost 50% improvement, especially when predicting the 1 side for ‘N-to-1’
relations, the Hits@ 10 metrics increase approximately from 65 to 95%. Meanwhile,
the ConvE-based model also increases 5% in ‘1-to-1’, ‘N-to-1", and ‘N-to-N’ relations.
The improvement of RotatE focuses on the ‘N’ side of ‘N-to-1’ relations, especially
the head entity prediction from 57.1 to 67.2%.

Those results indicate the effectiveness of composite neighbors. As the represen-
tations of different entities are supplemented by different composite neighbors, the
enhanced KGE model can better distinguish similar entities when processing multi-
end relations.

5 Discussions

In this section, we analyze theoretically about how the proposed Composite Neighbor-
hood Embedding (CoNE) framework eases two major problems, namely unbalanced
distribution and information redundancy.

5.1 Comparison of neighbor distribution

We make quantitative analysis about different additional information, including entity
descriptions, local neighbors from KG triples, semantic neighbors from descriptions,
and composite neighbors we proposed. The related results are shown in Fig. 5.
Figure 5a shows the distributions of different neighbors. The number of neighbors
per entity is sorted in descending order, and the maximum number K of composite
neighbors is set to 20. We can see that both of local neighbors and semantic neighbors
follow the power-law distribution approximately. There are only 2618 (35.89%) and
5219 (13.87%) entities having more than 20 neighbors in those two types respectively,
while in the long tail more than 60% entities are sparse. By contrast, in the composite
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Fig.5 The statistics of different additional information in FB15k-237. a The neighbor number distribution
for all entities. The value on the horizontal axis indicated by the dotted line represents the total number of
entities having at least 20 neighbors. b The histogram about multiple metrics, in which the sparsity degree
is the proportion of entities that have at most 5 words or neighbors

neighbors we proposed, there are 8661 (57.92%) entities having 20 neighbors. Mean-
while, it is proved the necessity of setting the upper limit. Adding the two neighbor
sets directly may lead to an explosion of neighbor number, which would hinder the
effectiveness of attention mechanism.

In Fig. 5b, we count the number of neighbors, and the length of description for each
entity in FB15k-237, and display four metrics including Mean, Standard Deviation,
and Sparsity degree. According to the Mean metric, the length of entity descriptions is
significantly more than the number of those neighbors. The standard deviation reflects
the unbalanced distribution, as a higher value means more volatility. Compared with
the other three types, composite neighbors has a relatively uniform distribution with
the lowest standard deviation 4.4. In terms of Sparsity, both of semantic neighbors and
local neighbors have more than 13% sparse entities. By contrast, composite neighbors
have the least sparse entities, occupied by only 1.2%, it indicates that the sparsity
problem is eased by combining two neighbor sets.

5.2 Redundancy and complexity analysis

Itis verified that the additional information is beneficial to the KGE methods. However,
information redundancy would lead to high computing pressure and performance
degradation. Experimental results in the previous section have shown that replacing
entity descriptions with composite neighbors can improve model performance. In this
section, we focus on the influence on model complexity and memory overhead.
Table 9 compares the space complexity of the CoONE-TransE model and two text-
enhanced models, where the parameter sizes of different components are given. The
total parameters of a model contain trainable parameters in the model and the mapping
matrix which recording additional information. The ‘Decoder’ and ‘Encoder’ part
denote the parameters in two components respectively, while the ‘Extra Info’ part
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Table 9 The space complexity comparison among CoNE and two text-enhanced methods, where the unit
of total parameters is M(illion), d is the dimension of embedding vectors, K is the number of words
or neighbors, |E|, |R|, |W| are represented the total number of entities, relations and the vocabulary in
descriptions respectively

Methods Decoder Extra Info Encoder Total parameters
DKRL (CNN) d|E| +d|R| d|W|+ K|E| 3d? +2d 93 M
Jointly (CBOW) d|E|+d|R| d(|W|+ |E|) + K|E| 0 11.1M
Jointly (LSTM) d|E|+d|R| d(W|+|E|+K|E| 4Qd*>+d) 112M
Jointly (Att_LSTM)  d|E|+d|R)| d(|W|+ |E|+ K|E| 5(2d? +d) 11.2M
CoNE (GCN) d|E|+d|R|  d|E|+|E|? d*+d 226 M
CoNE (GMN) d|E|+d|R| d|E|+ K|E| 3d? +3d 34M

contains the parameters related to additional information. We estimate the specific
number of parameters when using the FB15k dataset, with d = 100, K = 20, |E| =
14,951, |R| = 1345 and |W| = 76, 758. From Table 9 we can find that, overall,
the total parameters of our CoNE model on FB15k dataset is roughly half of those of
DKRL and Jointly models, while the variant of CoNE using GCN encoder need the
most memory overhead. There is no obvious difference in the ‘Decoder’ and ‘Encoder’
parts, as all models employ TransE as the decoder, and the parameters in encoders are
much less than embeddings.

In the comparison of the ‘Extra Info’ part, two text-enhanced models need more
parameters for word embeddings, as the vocabulary of entity descriptions are much
more than the entity number (d|W| > d|E|). As the general length of the entity
description is longer than 20, the total parameters would be increased further. Those
situations indicate the redundancy problem of text descriptions, while composite
neighbors solve the problem by reducing the total number and limiting the maximum
size of an entity’s neighbors.

Then, comparing different encoders, it is clear that the Graph Memory Net-
works(GMN) encoder has fewer parameters than CNN and LSTM. Especially, the
parameters of the GMN encoder is about one-tenth of that of Att_LSTM encoder.
Although GCN encoder costs less than GMN, the adjacent matrix as its input leads to
numerous memory overhead when facing large-scale knowledge graphs. This is one
of the reasons we propose GMN to improve it.

Note that, although those extension models introduce more parameters into the KGE
model, the training cost is acceptable benefited from pre-trained KGE embeddings.
Besides that, as the strong fitting capability of the neural network encoder, the model
can converge faster.

6 Conclusion
In this paper, we have proposed the Composite Neighborhood Embedding (CoNE)

model for knowledge graph embedding. Instead of entity descriptions, we define
composite neighbors as new additional information to overcome the distribution imbal-
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ance problem. We then exploit a novel Graph Memory Networks (GMN) encoder to
extract latent semantics from neighbors. Experimental results show that our model
can enhance different kinds of KGE models and achieve the state-of-the-art results on
the link prediction task. In comparison with text-enhanced methods, our model can
get better performance and reduce the space complexity. The encouraging results are
stimulating a number of further researches to extend the current work. In particular,
we will explore the following research activities in the future:

— Our approach currently selects neighbors from entity descriptions by name match-

ing , which inevitably results in certain omissions. We plan to develop a more
effective mechanism for neighbor selection.

— The CoNE model utilizes Graph Memory Networks as the neighbor encoder, which

is effective but still needs many additional parameters. We would like to try other
forms of encoders to further reduce the memory overhead.

— Composite neighbors are designed to overcome the sparsity of KGs. We will further

validate our CoNE model using more real KGs of specific domains such as finance
and health.
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