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HIGHLIGHTS

o We extract location, part-of-speech and sentiment features to enrich word representations.
o We propose the feature-based compositing memory networks with three compositing strategies.
o We obtain state-of-the-art performance in Laptops and Restaurants datasets of SemEval 2014.

ARTICLE INFO ABSTRACT

Article history:

Sentiment analysis is an important research field in natural language processing. Aspect-based sentiment
classification can efficiently solve fine-grained sentiment recognition, however, its classification accuracy
becomes decreasing for large-scale corpus. To solve this problem, we propose a new memory network
model, called Feature-based Compositing Memory Networks (FCMN). Differing from typical memory
networks, we extract three kinds of features to enrich the word representation of each context word.
We design compositing strategies combining feature representations and word embedding to improve
the performance of attention mechanism. Experiments on laptops and restaurants datasets in SemEval
2014 show that our approach outperforms the feature-based SVM, TD-LSTM and Deep Memory Networks.
Especially, FCMN gets better results with less hops than Deep Memory Networks. Experiments results
demonstrate that FCMN can ignore words without sentiment and pay more attention on correct words in
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1. Introduction

Internet of Things (IoT) covers a diverse range of fields with
respect to sensor networks [1,2], embedded systems [3], intelligent
control, data processing and fusion, task scheduling and alloca-
tion [4,5]. Recently, integrating social networking concepts into
IoT solutions, Social Internet of Things (SIoT) has become a hot
research topic [6,7]. The SloT paradigm represents an ecosystem
which allows people and smart objects to interact within a social
structure of relationships [8].

In order to maintain user-friendliness and bridge human-to-
machine perceptions in SIoT, Natural language processing (NLP)
along with Machine Learning algorithms are applied for extracting
the relevant signals from a users’ search query or other natu-
ral language interaction with services [9]. With the help of NLP
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technology, smart objects have the potential to understand the
user’s point of view from natural language, especially the basic
sentiment characteristics, such as positive and negative. However,
for machines, it is still a challenge to accurately identify sentiment
polarity from different texts, which limits the performance of
smart objects when interacting with users.

That leads to the sentiment analysis problem in NLP field, in-
creasingly concerned by scholars and IT enterprises [ 10]. An early
task in sentiment analysis is classifying the overall polarity of a
given text, whether the expressed sentiment is positive, negative,
or neutral. However, with the development of Internet and E-
commerce, many applications need to get more fine-grained senti-
ment polarity [ 11]. For example, different words in one commodity
comment on the shopping website may have opposing sentiments.
Considering the sentence “Great food but the service was dread-
ful”, customer is satisfied with the ‘food” while the sentiment for
‘service’ is negative. Therefore, an effective approach is researched
to estimate sentiment polarity towards a particular aspect in the
text, called Aspect-based Sentiment Classification (ABSC).
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To solve ABSC tasks, many machine learning algorithms are
used to build a sentiment classifier in supervise or unsupervised
manner [ 12]. One of representative methods is feature-based Sup-
port Vector Machine (SVM) [13], which utilizes engineering of
features covering surface features, lexicon features and parse fea-
tures. Although those approaches do work, the sparseness and dis-
creteness of features restrict their performance. Instead of feature
engineering, neural network models based on Recurrent Neural
Networks (RNNs) and Long Short-Term Memory (LSTM) generate
continuous text representation to capture the relation between
aspect terms and context words [14]. However, sequential oper-
ation of RNNs has the drawback that they cannot take different
operations by the importance of each context word.

In recent years, attention mechanism and memory networks
take considerable effect in question answering (QA) and other
natural language processing tasks [15,16]. Inspired by memory
networks, Tang et al. develop Deep Memory Network for aspect-
based sentiment classification [17]. This approach converts the
ABSC tasks into question answering directly and each memory
unit stores only one word in sentence. However, there is still
improvement room to focus on the peculiarity of ABSC tasks and
exert the ability of memory networks better.

In our opinion, typical memory networks model cannot utilize
its ability for ABSC tasks. The success of memory networks in
QA tasks is partly determined by its facts reasoning ability which
locates mentions of question in sentences and chooses the related
sentence as facts to generate new question in single hop. The facts
reasoning mechanism depends on long-text inputs [18] or short-
text inputs with limited vocabulary [ 19]. However, the situation of
ABSC tasks is opposite. For example, laptops dataset from SemEval
2014 [20] have more than 3000 vocabularies, but each review
about laptops only has 21.5 words on average.

Because of the special situation, only word embedding used
as external memory in memory networks is not enough. Short
sentence and diverse vocabulary make the embedding representa-
tion only contains scarce and scattered information. It is difficult
to fit an effective function to gather sentiment evidences from
those memory units. Therefore, an intuitive thought is that enrich-
ing input resources to generate a more effective representation
for each context word. This thought is inspired by the cognitive
characteristic of humans. When humans are asked to do this task,
they can utilize related memory to judge sentiment polarity. For
one word, humans can recall its general meaning and usual usage,
which are helpful to understand the whole sentence. Machines also
need those word information instead of just computing similarity
for different words through low-dimensional vectors.

Based on the above ideas, we propose a new neural net-
work model, called Feature-based Compositing Memory Networks
(FCMN). While iterating in multiple computational layers (hops),
our approach computes context representation for each word con-
sisting of embedding vectors and multi-angle features by using
compositing strategies. The features of words include location
features, part of speech (POS) features and sentiment features.
Each layer in FCMN computes attention scores between aspect
representation and every context word. Then attention scores are
used to capture the evidences from memory to build new aspect
representation. The aspect representation of the last layer inputs
into alinear layer classifier for final sentiment classification. Except
the pre-processing of feature extracting, the FCMN model is trained
end-to-end with Adaptive Gradient (AdaGrad) algorithm [21] and
the loss function is based on cross-entropy error.

Our approach has been verified in laptops and restaurants
datasets from SemEval 2014, and precedes the existing state-of-
art approaches including feature-based SVM and DMN model pro-
posed by Tang et al. Compared with DMN, FCMN can get higher
accuracy using less hops. According to the analysis of attention

mechanism in DMN and FCMN, our approach has better perfor-
mance in distributing attention scores and the ability of ignoring
words without sentiment. The main contributions of the paper are
as follows:

e We choose three kinds of word features to enrich word
representations, including location features, part-of-speech
features and sentiment features. And we design method to
extract them and compute a feature representation used in
memory networks.

e We propose the feature-based compositing memory net-
works with three different compositing strategies. The per-
formance of the memory network in solving aspect-based
sentiment classification has been improved.

e We obtain state-of-the-art performance for aspect-based
sentiment classification in Laptops and Restaurants datasets
of SemEval 2014.

2. Related work
2.1. Attention mechanism and memory networks

Recently, computational models based attention mechanism
and explicit memory have shown great success in many NLP
tasks, such as machine translation [22], question answering and
sentiment classification [23]. Attention mechanism computes an
attention store/weight to each lower position and combines those
weighted positions to build one upper level representation, which
can improve the performance of machine learning models [24].

Neural networks with a memory capacity provide a promis-
ing approach to natural language processing. Gated recurrent
units (GRU) and LSTM-based models can be regarded as internal
memory-based architectures, addressing memory through local
memory cells which lock in the network state from the past [25].

Recent researchers focus on extending deep neural networks
with external memory, such as the Neural Turing Machine which
uses a continuous memory representation with both content and
address-based access [26]. Weston et al. propose a neural networks
based framework called Memory Networks (MemNNs) [27], which
is designed with non-writable memories, and construct layered
memory representations. Based on MemNNs, end-to-end memory
networks (MemN2N) [28] can be trained end-to-end and possess
a capacity of facts reasoning to solve complex question answer-
ing problems. Another model using external memory is Dynamic
Memory Network [29] which is equipped with an episodic memory
and shows promising results on both question answering and
sentiment analysis tasks.

Inspired by the recent success of MemNNSs, our model enriches
the typical word embedding by integrating context features and
improves the ability of memory networks for sentiment analysis.

2.2. Aspect-based sentiment classification

The goal of aspect-based sentiment classification is to detect
sentiment expressed towards a given aspect term [20]. Some of the
earlier approaches build sentence representations using features
extracted from syntactic parser or external sentiment lexicons. For
instance, feature-based SVM [13] trains a classifier with effective
feature templates. In recent years, more researchers utilize the
capability of neural model, like RNNs and LSTM, in learning con-
tinuous text representation [30]. AdaRNN uses the dependency
parsing results to find words syntactically connected with the
interested target [31]. Nguyen et al. propose PhraseRNN to identify
sentiment of the aspect in sentences taking both dependency and
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constituent trees into account [32]. Tang et al. put forward target-
dependent LSTM (TD-LSTM) approach, which selects the relevant
parts of context to infer sentiment polarity towards the target [33].

The latest state-of-the-art approach is deep memory networks
by Tang et al. [17], which exerts the reasoning ability of memory
networks partly and gets promising performance in ABSC tasks.
To Improve this approach, our approach integrates three kinds of
context features into memory network model and improves the ar-
chitecture of attention component by using different compositing
strategies.

3. Models

In this section, we describe the feature-based compositing
memory networks in detail. We first work out a definition of
aspect-based sentiment classification tasks. Then we briefly intro-
duce the end-to-end memory networks approach, which is the
basis framework of our approach. After the overview of FCMN,
we emphatically introduce the feature choosing and compositing
strategy.

3.1. Task definition and notation

Aspect-based sentiment classification is vital in sentiment anal-
ysis. For sentence S = {wy, w,, ..., w,} and an aspect term A =
{ay, az,...,an}(0 < m < n), words in aspect term are contained
inS (A C S). The aim of ABSC tasks is to classify the sentiment
polarity (‘positive’, ‘negative’ and ‘neutral’) for every (S, A) pair. For
example, the polarity of (“Did not enjoy the new Windows 8 and
touchscreen functions.”, “Windows 8”) is ‘negative’, and that of (“I
am still in the process of learning about its features”, ‘features’) is
‘neutral’.

3.2. End-to-end memory networks

We use QA task as example to explain the architecture of end-
to-end memory networks (MemN2N) [28]. Different from ABSC
task, the QA task aims to get answer from a list of sentences
(story) to solve the question. Having great performance in QA tasks,
MemN2N can be divided into two components: facts reasoning
and answer predicting. Facts reasoning component finds facts from
given sentences and question iteratively in multiple computational
layers (hops). External memory used in each hop is comprised
of a set of input and output memory representations, in which
each memory unit contains one sentence’s information. Answer
predicting computes final answer by processing the facts from the
last hop of facts reasoning.

In each hop of facts reasoning, sentences are encoded into d-
dimensional memory vectors which are used as input memory
representations. Similarly, a question representation is calculated
by question and utilized to compute the relevance score with
each input memory unit. Afterwards, the score vector as attention
weight computes a weighted sum with output memory represen-
tations which are encoded in same way with input memory using
different embedding matrix. The sum vector is regarded as the fact
representation in each hop. Then new question representation is
constructed by the sum of the facts and old question, as the output
of this hop. The output of hop k is used as the question input of hop
k + 1, the last output is passed through answer predicting which
contains a final weight matrix W and a Softmax to produce the
predicted label.

In some follow-up work of MemN2N, the input and output
memory are merged into one. To solve ABSC tasks, we make sev-
eral modifications at the basic architecture of MemN2N following
Dynamic Memory Networks and Deep Memory Networks by Tang
et al. The detailed architecture of our approach is described in
following sections.

predicted answer softmax
—

hop3

context embedding hou?
op

hopl

~

aspect embedding

Fig. 1. Anillustration of basic model of FCMN without composite strategies. This is a
three layers (hops) model in which the context and aspect embedding are encoded
from context words and aspect words respectively.

3.3. An overview of FCMN

In this part, we make an overview of feature-based compositing
memory networks. As described in Section 1, it is hard in ABSC
tasks to find related facts in which every memory unit only con-
tains one word’s embedding vector. Thus, our approach aims to
enrich the input resources as much as possible by combining with
different kinds of word features.

Given a sentence and aspect term for one task, we first separate
the sentence into aspect words and context words. Then both of
them are embedded into vectors of dimension d by an embedding
matrix (of sizedx V, V is vocabulary size). Subsequently, we extract
three kinds of features from the context words, and convert them
into d-dimension vectors. In order to utilize the word features in
Memory Networks, three compositing strategies are designed to
composite context features and context embedding before, during,
after the attention component respectively.

Without compositing strategies, the basic model of FCMN is
similar with Deep Memory Networks, as shown in Fig. 1. The FCMN
has multiple layers (hops), each layer has an attention component
and a review component. The sum of outputs from two component
is considered as the input of next layer. Different layers have
shared parameters and external memory. In each hop, new facts
are extracted from memory according to the aspect representation,
which in the first layer is aspect embedding vector. The output
vector of last layer contains the whole facts about aspect sentiment
polarity, and is used to predict the final answer for aspect-based
sentiment classification. The model can be trained end-to-end in
supervised way.

3.4. Input representation and feature extracting

The input representation contains context embedding, aspect
embedding and context features. We regard the context embed-
ding and context features as external memory in MemNNs, which
has a description of multiple perspectives for a single word. Both
of them are immovable when model is running, while aspect
embedding representation as ‘question’ is updated in each hop.
Fig. 2 shows the constitution of input representation of FCMN.

Before training in the multilayer model of FCMN, each word in
input sentence is converted into d-dimensional vector, which is
known as word embedding. Given a word set S of input sentence,
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Fig. 2. The constitution of input representation in FCMN.

we first separate S into two sets, context set C = {c1, 2, ..., Cp.}
and aspect set A = {a;,ay, ..., a,}, whereS = C + A and n,
plus n, equals the sentence length. The context set {c;} is converted
into memory vectors {m;} with d-dimensional Glove vectors (of
size d x V) [34]. The same embedding operation is used to obtain
the aspect vectors {g;} which are averaged to build a single vector
u € R™! as question input in memory networks.

Besides the embedding representations, we build another rep-
resentations for context words by extracting context features in
three directions.

(1) Location Feature: The location feature is used widely in re-
cent attention mechanism research. It is helpful because the
closer context words usually have tighter relationship with
aspect words. Following Tang et al., we build the location
vector {l;} by computing location value for each word with:
S
J
where J is the number of context words, d; is the absolute
distance between the single word and aspect term.
POS Feature: The part-of-speech is beneficial to the sen-
timent analysis. To obtain part-of-speech (POS) tags, con-
text words are parsed with the Natural Language Toolkits
(NLTK) [35] and we build a POS vector {t;}, in which each
element t; is the category Id of single word w;. The category
Id is the index number in candidate categories.
Sentiment Feature: The sentiment polarity of single word
in usual can help to define it in current sentence. If there
are much more positive words than negative words in the
sentence, this sentence has a high probability to be positive.
We build the sentiment vector {s;} with the support of
NRC Hashtag Sentiment Lexicon [36], which is created from
775,310 tweets posted between April and December 2012.
In the sentiment vector, s; is a real number as sentiment
score for word w;. The sentiment polarity is decided by sign
symbol of the score whose absolute value is the degree of
association with the sentiment. As words not in the lexicon,
we set their sentiment score as 0.

(1)

Three feature vectors {I;}, {t;}, {s;} (of size n. x 1) are calculated
in data pre-processing phase and used as complementary inputs
in our approach. Then feature vectors are integrated into a feature
representation with d dimensions. The {l;}, {s;} are continuous
real-valued vectors, while the {t;} is a discrete and integer-valued
vector. Thus, data transformation for three vectors is necessary.
Location vector {l;} and sentiment vector {s;} are converted into
d-dimensional vectors using a linear layer with tanh function.

POS vector {t;} is embedded with a trainable embedding matrix
W; € R¥™"t (V; is the number of tag categories). The final feature
representation vector is produced with:

fi=li+si+t. (2)

The feature representations {f;} can provide three kinds of features
for context words, while the context embedding {m;} is considered
as description of the lexical meaning benefitting by Glove vectors.
Composited with two parts of information, the external memory
contains multi-angle representations for each word.

3.5. Feature-based compositing memory networks

In this part, we describe Feature-based Compositing Memory
Networks model in detail. As basic model shown in Fig. 1, our
model has multilayer architecture and external memory. Each
layer consists of two parts, attention component and review com-
ponent. Different from basic model, the external memory in FCMN
not only has context embedding, but also contains context features
described in Section 3.4. According to compositing strategies, the
two parts of representation are utilized in attention component. An
illustration of single layer version of FCMN with front-compositing
strategy is given in Fig. 3.

As shown in Fig. 3, context features and context embedding
are added together directly to obtain the context representations
{m;} € R¥" Then {m;} are used as external memory in attention
component. Because compositing operation occurs before atten-
tion component, this strategy is called front-compositing strategy.

For each context word with aspect words, the attention compo-
nent computes an attention score p € R"*! is computed by taking
a RelU layer followed by Softmax function:

& = ReLU(Waee[m;; u] + bar) (3)

pi = Softmax(g;) (4)

where Softmax(z;) e/ ed, Wor € R™2 and By € R™L.
In preliminary experiments, we find that the attention score ap-
proach has better performance than function in end-to-end mem-
ory networks. Attention score determines how much attention
that machine pays for each word in external memory units. We
calculate the output vector of attention component by a weighted
sum using the score vector p:

o:Zp,-xmi. (5)

Attention component aims to find new facts from memory, while
review component is used to process the old facts. This component
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Fig. 3. Anillustration of single layer version of FCMN with front-compositing strategy.

is a ReLU layer with aspect representation u as input:

= ReLU(Wiep + byey) (6)

where Wy, € R and B, € R™*!. After obtaining output vectors
o and i from two components, we finally sum them as the output
of single layer which is used as aspect input of next layer:
Ut =gk 4 o,

(7
The output of last layer is passed through a final weight matrix W
(of size d x d) and a Softmax function to produce the predicted
sentiment polarity:

a = Softmax(W(ii" + o™)). (8)

Just like the working memory in psychology, multilayer memory
networks aim to build short-term, limited memory according to
aspect and context inputs. The context representations used as
external memory, can be regarded as knowledge and experience
about context words from long-term memory. In each single layer
of FCMN, related sentiment information is extracted by attention
component from external memory, and combined with review
information to build short-term working memory. Human-like
facts reasoning makes the FCMN have the ability to solve aspect-
based sentiment classification.

3.6. Compositing strategies for FCMN

In previous section, we take the front-compositing strategy as
an example to describe the detailed mechanism of FCMN. How-
ever, directly summing in that approach is so simple and has no
modification with architecture of attention component. To make
context features play its role effectively in FCMN, we design three
compositing strategies which are described below:

(1) Front-compositing: As shown in previous section, this
strategy effects before attention component. For given con-
text embedding {m;} and context features {f;}, the composit-
ing representations 1; € R¥*™ is computed with:
my=m + fi.

(9)

Then the compositing context representations are used as
external memory in FCMN.

Inside-compositing: In this strategy, context embedding
{m;} and context features {f;}, are used to compute attention
score respectively. Obtaining score vector py, for context

embedding is the same with Eqgs. (3), (4), while score vector
py; for context features is computing with:

8 = ReLU(Waa[fi; ul + baw2) (10)

Py, = softmax(&) (11)

where Wy» € R'™24 and By, € R™. The final score vector
used as weight in Eq. (5) is the sum of two attention scores.

Di = DPm; + Dy;- (12)

Rear-compositing: Another attention component is in-
serted into each single layer in rear-compositing strategy.
The new component using the context features as external
memory, has the same operation with attention component
described above. The output vector of new component 0;
is added with attention output o; and review output u; to
obtain the final output of single layer.

(3)

uk+1 — ﬁk + Ok + 6k' (13)

According to the difference of the compositing location, the
compositing strategy are divided into three types. An illustration
of single layer model with three compositing strategies is shown
in Fig. 4. It needs to be emphasized that, the objects we composited
are different when compositing location changing. Input represen-
tations are composited in front-compositing, corresponding to the
attention score in second strategy, and the last composited object
is output vector. In next section, we analyze the performance of
three compositing strategies in depth on the basis of experiment
results.

4. Experiments

In this section, we first describe the experiment settings and
training details. Then we compare performance of FCMN with
other approaches on Laptops and Restaurants datasets from Se-
mEval 2014. The effectiveness of three compositing strategies is
analyzed in depth and finally we discuss the performance of atten-
tion mechanism after compositing context features.

4.1. Dataset and data preprocessing

Two datasets from SemEval 2014 [20] have been employed for
the experiments, which containing manually annotated reviews



884 R. Ma et al. / Future Generation Computer Systems 92 (2019) 879-888

aspect embeddmg

context representatlon :

_—

output
_\‘ P

n

context features context embedding

aspect embeddlng

i [ review ]
context features \‘

(b)
aspect embedding
N
context embedding output
— -

context features

—»/

(c)

Fig. 4. An illustration of single layer model with three compositing strategies. (a)
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of laptops and restaurants respectively. In two datasets, a given
ABSC task consists of a review sentence and an aspect together
with a polarity label including four categories: ‘positive’, ‘negative’,
‘neural’ and ‘conflict’. We follow the process of Tang et al. removing
‘conflict’ category because instances in this category are very few
and make the dataset extremely unbalanced. The statistics of two
datasets are shown in Table 1.

As described in Section 3, we preprocess the datasets and ex-
tract word features for each review sentence. After preprocessing,
the data inputs of FCMN for each task contains 6 parts: (1) Context
words vector, each element is the index of word in vocabulary. (2)
Aspect words vector, the same architecture with context words
vector. (3) Polarity Index, the index of category which polarity
belongs to. (4) Location feature vector, each element is location
value for corresponding word. (5) Sentiment feature vector, each
element is sentiment value for corresponding word. (6) Part-of-
speech feature vector, each element is the index of POS category.
Except the aspect words vector and polarity index, the other four
vectors have the same size which is equal to the length of context
words in sentence. The polarity index is regarded as ‘label’ to
compare with the classification results.

4.2. Training details

We implement our model in Tensorflow [37] and use Python
script. Training of FCMN is cast as a supervised classification prob-
lem to minimize cross-entropy error of the predicted sentiment
polarity sequence. Our models are trained using a learning rate of
n = 0.01. We use back propagation to train all of parameters, and
update gradients with AdaGrad optimization algorithm. Besides
the gradients with norm greater than 100 are clipped to 100.

Table 1

The statistics of two datasets for three polarity categories.
Dataset Positive Negative Neural
Laptop-Train 994 870 464
Laptop-Test 341 128 169
Restaurant-Train 2164 807 637
Restaurant-Test 728 196 196

Table 2

Classification accuracy of different approaches on two datasets.
Methods Laptops Restaurant
Majority 53.45 65.00
Feature + SVM 72.10 80.89
LSTM 66.45 74.28
TDLSTM 68.13 75.63
MemN2N 63.11 7217
DMN 72.37 80.95
FCMN(1) 67.35 79.17
FCMN(3) 72.68 80.25
FCMN(5) 73.31 81.15
FCMN(8) 73.94 81.60
FCMN(9) 72.68 82.03

The glove vectors we use are 300-dimensional, trained with 42B
tokens and have a 1.9M vocabulary. And we set the number of POS
categories as 37 and randomize other parameters with uniform
distribution U(—0.01; 0.01).

4.3. Comparing to other approaches

We compare FCMN with other approaches on both datasets.
Those approaches include the basic baseline method Majority,
Feature-based SVM [13], basic LSTM, TDLSTM [33], End-to-end
Memory Networks (MemN2N) [28] and DMN proposed by Tang
et al. [17]. Experimental results are shown in Table 2.

Our approach FCMN with inside-compositing is shown as FCMN
(k), where k is the number of hops in model. From Table 2, we can
find that both of LSTM and MemN2N get better results than basic
Majority approach. To some extent, it proves the effectiveness of
neural network approach. Although the basic MemN2N is worse
than LSTM, DMN and our FCMN get much better performance
than LSTM and its variant TDLSTM. Our approach in shallow hops
(k < 3) can already outperform the basic approach and TDLSTM.
In deep hops, we obtain higher accuracy than the state-of-art
approaches feature-based SVM and DMN. With the supporting of
context features, we outperform DMN which does not use syntactic
parser or sentiment lexicon. Compared with feature-based SVM,
we can get better results with less features used.

4.4, Comparing to DMN in different hops

To verify the effectiveness of our approach, we compare FCMN
with DMN in different hops from 1 to 9 graphically showcased in
Fig. 5. The detailed results are shown in Table 3.

In both DMN and FCMN, the performance of memory networks
is on the rise with the increasing of hops. After 6 hops the perfor-
mance appears fluctuating, and the best value is obtained when
the model has more than 7 hops. As shown in the line chart,
our approach has better results than DMN in almost every state,
especially in Laptops dataset. Compared with DMN, FCMN has the
ability to get better results with less hops. On both two datasets, the
accuracy of FCMN using 2 hops exceeds DMN with hops less than 7.

4.5. Effects of three compositing strategies

As mentioned in Section 3.6, we design three compositing
strategies to combine context features and context embedding
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Table 3

Detailed results of comparison with FCMN and DMN on two datasets.

Hops DMN-Laptops FCMN-Laptops DMN-Restaurants FCMN-Restaurants
1 67.66 67.35 76.10 79.17
2 71.14 72.21 78.61 80.25
3 71.74 72.68 79.06 80.25
4 72.21 73.63 79.87 80.52
5 71.89 73.31 80.14 81.15
6 72.21 72.53 80.05 80.70
7 72.37 73.16 80.32 81.06
8 72.05 73.94 80.14 81.60
9 72.21 72.68 80.95 82.03

Table 4

Related score for each context word in attention component of 9 hops basic FCMN model when hops from 1 to 9. The example sentence is “Great food but the service was

dreadful!” with ‘food’ and ‘service’ as aspect.

(a) Aspect: Food Polarity: Positive Result: Wrong

(b) Aspect: Service Polarity: Negative Result: Right

Hops great but the service was dreadful ! Hops great food but the was dreadful !

1 0.18 0.14 0.06 0.09 0.07 0.36 0.09 1 0.17 0.08 0.14 0.07 0.07 0.37 0.09
2 0.18 0.14 0.06 0.09 0.07 0.36 0.09 2 0.16 0.08 0.13 0.07 0.08 0.38 0.09
3 0.18 0.14 0.06 0.09 0.07 0.37 0.09 3 0.16 0.08 0.13 0.07 0.08 0.38 0.09
4 0.17 0.13 0.07 0.09 0.07 0.37 0.09 4 0.16 0.09 0.13 0.07 0.08 0.38 0.09
5 0.16 0.13 0.07 0.09 0.08 0.38 0.09 5 0.15 0.09 0.13 0.08 0.08 0.38 0.1
6 0.15 0.13 0.07 0.09 0.08 0.38 0.09 6 0.15 0.09 0.12 0.08 0.09 0.38 0.1
7 0.15 0.12 0.08 0.1 0.08 0.38 0.09 7 0.14 0.09 0.12 0.09 0.09 0.37 0.1
8 0.14 0.12 0.08 0.1 0.09 0.37 0.1 8 0.14 0.1 0.12 0.09 0.09 0.36 0.1
9 0.14 0.12 0.09 0.1 0.09 0.36 0.1 9 0.14 0.1 0.12 0.09 0.1 0.35 0.1

84

=—a FCMN_Restaurants
e—e DMN_Restaurants

=—a FCMN_Laptops
e—e DMN_Laptops

66 L 1 1 ! L 1 1
i 2 3 4 5 6 7 8 9

Hops

68

Fig. 5. Classification accuracy of FCMN and DMN in different hops on two datasets.

effectively in FCMN. The intuitive difference of those strategies
is compositing location relative to attention component in single
layer. We test performance of FCMN with different compositing
strategies on two datasets, and experiment results are shown in
Fig. 6.

In Fig. 6, each line emerges the changes of classification accu-
racy using corresponding strategy when the hops number varies
from 1 to 9. On the whole, the inside-compositing strategy gets
better performance than the other two strategies, while it keeps
high accuracy steadily and gets the best accuracy on both two
datasets. In Laptops dataset, the inside-compositing strategy keeps
more than 72% accuracy when the hops number larger than 1.
Meanwhile, it keeps more than 80% accuracy with more than one
hop in Restaurants dataset. In comparison, the other two strategies
are weaker than the inside-compositing on overall performance.
And there are obvious fluctuations in those two strategies with
hops increasing. In spite of this, the two strategies still have good
performance. The front-compositing strategy gets better accuracy
than the best results of DMN on both laptops and restaurants

datasets. And the rear-compositing strategy outperforms DMN
on restaurants dataset when model contains 8 hops. Compared
with compositing the input vectors or output vectors, we find
that compositing two score vectors in inside-compositing gets the
best performance. The reason probably is that using this way not
only retains the characteristics of word embedding and features,
but also makes the two parts influence each other in attention
mechanism.

4.6. Detailed analysis of attention mechanism in FCMN

We get better performance than DMN based on the same mem-
ory networks model. However, why it works when combining the
context features into context embedding? To answer this question,
we analyze the effects of attention mechanism when running hop
by hop. In attention component, how much evidence extracted
from each context word is determined by the attention scores in
each hop. Because the sum of attention scores for all words is equal
to 1, the other scores decrease when one word gets higher score.
Thus, we display the attention scores in each hop to understand
how machines finding answer in different models. We compare
three models including the basic model of FCMN, DMN by Tang
et al. and FCMN with inside-compositing strategy. The results are
shown from Table 4 to Table 6.

We choose two representative tasks as examples to show ex-
periment results. The two tasks have the same sentence “Great
food but the service was dreadful !”, but obtain contrary polarity
because of different aspect ‘food’ and ‘service’. Humans can under-
stand easily that the sentiment of ‘food’ is determined by ‘great’
and ‘dreadful’ is used to describe ‘service’. We denominate the
words reflecting sentiment in sentence as ‘keyword’, such as ‘great’
and ‘dreadful’ in this example.

As shown in Table 4, the basic model only using context em-
bedding fails in task 1, while it pays more attention on keyword
‘dreadful’ than correct keyword ‘great’ when aspect is ‘food’. De-
spite the basic model passes the task 2, the attention scores in two
tasks has no obvious difference. It shows that the basic model is
not enough sensitive when aspect changing, one of reasons is that
word embedding in Glove just reflects general meaning of single
word.
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Fig. 6. Classification accuracy of FCMN with three compositing strategies on two datasets.

Table 5

Related score for each context word in attention component of 9 hops DMN model when hops from 1 to 9. The example sentence is same as Table 4.

(a) Aspect: Food Polarity: Positive Result: Right

(b) Aspect: Service Polarity: Negative Result:Right

Hops great but the service was dreadful ! Hops great food but the was dreadful !

1 0.26 0.18 0.07 0.09 0.08 0.21 0.1 1 0.17 0.09 0.15 0.06 0.07 0.35 0.1
2 0.26 0.18 0.06 0.09 0.08 0.22 0.1 2 0.16 0.09 0.15 0.07 0.07 0.36 0.1
3 0.26 0.17 0.08 0.1 0.09 0.2 0.11 3 0.15 0.09 0.14 0.08 0.08 0.36 0.1
4 0.26 0.18 0.07 0.09 0.08 0.21 0.1 4 0.15 0.09 0.14 0.08 0.08 0.36 0.1
5 0.26 0.17 0.08 0.1 0.09 0.2 0.11 5 0.15 0.1 0.14 0.08 0.09 0.35 0.1
6 0.26 0.17 0.08 0.1 0.09 0.2 0.11 6 0.14 0.1 0.13 0.09 0.09 0.35 0.1
7 0.25 0.17 0.08 0.1 0.09 0.2 0.11 7 0.14 0.1 0.13 0.09 0.09 0.33 0.11
8 0.25 0.17 0.08 0.1 0.09 0.2 0.11 8 0.14 0.11 0.13 0.1 0.1 0.32 0.11
9 0.25 0.16 0.09 0.1 0.1 0.19 0.11 9 0.14 0.11 0.13 0.1 0.1 0.3 0.11

Table 6

Related score for each context word in attention component of 9 hops FCMN model with inside-compositing strategy when hops from 1 to 9. The example sentence is same

as Table 4.

(a) Aspect: Food Polarity: Positive Result: Right

(b) Aspect: Service Polarity: Negative Result: Right

Hops great but the service was dreadful ! Hops great food but the was dreadful !

1 0.31 0.14 0.05 0.09 0.05 0.28 0.09 1 0.09 0.04 0.08 0.05 0.08 0.61 0.05
2 0.37 0.14 0.05 0.08 0.04 0.27 0.05 2 0.09 0.04 0.07 0.05 0.09 0.61 0.05
3 0.37 0.14 0.04 0.08 0.04 0.26 0.07 3 0.08 0.04 0.06 0.06 0.1 0.62 0.04
4 0.39 0.15 0.04 0.08 0.04 0.25 0.06 4 0.08 0.04 0.07 0.06 0.1 0.62 0.04
5 0.39 0.15 0.04 0.08 0.04 0.24 0.06 5 0.08 0.04 0.06 0.06 0.1 0.62 0.04
6 04 0.15 0.04 0.08 0.03 0.23 0.06 6 0.08 0.04 0.06 0.06 0.1 0.61 0.04
7 0.4 0.15 0.04 0.08 0.03 0.23 0.06 7 0.07 0.04 0.06 0.06 0.1 0.61 0.04
8 0.41 0.16 0.04 0.08 0.03 0.22 0.06 8 0.07 0.04 0.06 0.06 0.1 0.61 0.05
9 0.41 0.16 0.04 0.09 0.03 0.21 0.06 9 0.07 0.04 0.06 0.07 0.11 0.6 0.05

To solve this problem, DMN integrates location information
into attention component and obtains good effect in Table 5. The
attention scores in DMN are the same as those in basic model
for task 2. Nevertheless, DMN passes the first task successfully
because it gets a little higher score for correct keyword ‘great’ than
‘dreadful’. This illustrates the benefit of location information in
DMN.

Compared with DMN, our approach enriches word representa-
tions by three kinds of features and gets improvement in attention
component as shown in Table 6.

On the one hand, our approach ignores words without con-
taining sentiment. Because of the part-of-speech features and
sentiment features in context representations, the FCMN model
can learn to ignore words. Those ignored words have no obvious
sentiment polarity or belong to a category in which words usually
not used to express feelings. The attention scores for each context

word in three different models are shown in Fig. 7. From the bar
charts, some words in FCMN, such as ‘but’, ‘was’ and ‘!’, have lower
score than those in basic model and DMN.

On the other hand, our approach makes correct keyword more
distinct. After ignoring words without sentiment, the model needs
to determine which is more important in the remaining keywords.
FCMN puts up a good performance in this part. For task 1 with
aspect ‘food’, correct keyword ‘great’ obtains higher score with the
hops number increasing. The ‘great’ score is almost two times more
than ‘dreadful’ in the final hop. Furthermore, keyword ‘dreadful’ in
task 2 obtains more than 0.6 score in our approach. With the hops
number increasing, the score of ‘dreadful’ remains stable rather
than decreasing in two models above.

According to experiment results above, FCMN can capture key-
word more effectively than DMN and improve the performance of
attention mechanism with the support of context features.
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Fig. 7. The attention scores of final hop in three different models. The example sentence is “Great food but the service was dreadful!” with ‘food’ and ‘service’ as aspect.

5. Conclusion

Identifying sentiment polarity from users’ opinion can improve
user-friendliness in Social Internet of Things. In this paper, we
propose feature-based compositing memory networks (FCMN) to
solve aspect-based sentiment classification. The FCMN extracts
information not only from word embedding, but also with the
support of three kinds of word features including location fea-
tures, part-of-speech features and sentiment features. Three com-
positing strategies are designed to combine those information to
build context representations, and we find the FCMN with inside-
compositing strategy has the best performance. Our approach out-
performs the existing state-of-the-art approaches feature-based
SVM and deep memory networks in the laptops and restaurants
datasets of SemEval 2014. After the analysis of attention mech-
anism in FCMN, enriching context representations can make the
keywords in sentence more distinct, and help FCMN to select
effective information from context words.

We will further focus on improving FCMN model and applying
it to other NLP problems. On the one hand, there may be more
effective way to integrate three features instead of a simple sum.
Moreover, besides location, POS, sentiment features, compositing
other features into FCMN is worth to study. On the other hand,
enriching word representations can provide more information to
memory networks, it will be useful in other NLP problems. Thus,
our next step will try to apply FCMN to solve those problems, such
as question answering, natural language inference, and machine
translation.

Acknowledgments

This work is supported by National Natural Science Foundation
of China (Grant No. 61672131) and the Fundamental Research
Funds for the Central Universities (DUT17ZD216 and DUT16QY27).

References

[1] T.Qiu,R.Qiao, M. Han, A.K.Sangaiah, I. Lee, A lifetime-enhanced data collecting
scheme for internet of things, [IEEE Commun. Mag. 55 (11) (2017) 132-137.
S. Cheng, Z. Cai, J. Li, H. Gao, Extracting kernel dataset from big sensory data in
wireless sensor networks, IEEE Trans. Knowl. Data Eng. 29 (4) (2017) 813-827.
T. Qiu, A. Zhao, F. Xia, W. Si, D. Wu, ROSE: Robustness strategy for scale-free
wireless sensor networks, [EEE/ACM Trans. Netw. 25 (5) (2017) 2944-2959.
[4] T.Qiu, R. Qiao, D. Wu, EABS: An event-aware backpressure scheduling scheme
for emergency internet of things, IEEE Trans. Mob. Comput. (2017). http://dx.
doi.org/10.1109/TMC.2017.2702670.

2

[3

[5] X. Zheng, Z. Cai, J. Li, H. Gao, A study on application-aware scheduling in

wireless networks, IEEE Trans. Mob. Comput. 16 (7) (2017) 1787-1801.

L. Atzori, A. lera, G. Morabito, M. Nitti, The social internet of things (SIoT)

when social networks meet the internet of things: Concept, architecture and

network characterization, Comput. Netw. 56 (16) (2012) 3594-3608.

[7] Z.He,Z.Cai,]. Yu, X. Wang, Y. Sun, Y. Li, Cost-efficient strategies for restraining

rumor spreading in mobile social networks, IEEE Trans. Veh. Technol. 66 (3)

(2017) 2789-2800.

D. Hussein, S.N. Han, G.M. Lee, N. Crespi, E. Bertin, Towards a dynamic discov-

ery of smart services in the social internet of things, Comput. Electr. Eng. 58

(2017) 429-443.

M. Strohbach, H. Ziekow, V. Gazis, N. Akiva, Towards a big data analytics

framework for IoT and smart city applications, in: Modeling and Processing for

Next-Generation Big-Data Technologies: With Applications and Case Studies,

Springer, 2015, pp. 257-282.

[10] L. Zhang, B. Liu, Sentiment analysis and opinion mining, in: Encyclopedia of
Machine Learning and Data Mining, Springer, 2016, pp. 1-10.

[11] M. Hu, B. Liu, Mining opinion features in customer reviews, in: Proceedings of
the 19th National Conference on Artifical Intelligence, 2004, pp. 755-760.

[12] J.Wagner, P. Arora, S. Cortes, U. Barman, D. Bogdanova, J. Foster, L. Tounsi, DCU:
Aspect-based polarity classification for SemEval task 4, in: Proceedings of the
8th International Workshop on Semantic Evaluation, SemEval 2014, 2014, pp.
223-229.

[13] S.Kiritchenko, X. Zhu, C. Cherry, S. Mohammad, NRC-Canada-2014: Detecting
aspects and sentiment in customer reviews, in: Proceedings of the 8th Interna-
tional Workshop on Semantic Evaluation, SemEval 2014, 2014, pp. 437-442.

[14] H. Lakkaraju, R. Socher, C. Manning, Aspect specific sentiment analysis using
hierarchical deep learning, in: Proceedings of the NIPS Workshop on Deep
Learning and Representation Learning, 2014, pp. 1-9.

[15] J. Dodge, A. Gane, X. Zhang, A. Bordes, S. Chopra, A. Miller, A. Szlam, ]. Weston,
Evaluating prerequisite qualities for learning end-to-end dialog systems, in:
Proceedings of the International Conference on Learning Representations,
ICLR, 2016.

[16] A. Bordes, N. Usunier, S. Chopra, ]. Weston, Large-scale simple question an-
swering with memory networks, CoRR abs/1506.02075, 2015, pp. 1-10. arXiv:
1506.02075.

[17] D.Tang, B. Qin, T. Liu, Aspect level sentiment classification with deep memory
network, in: Proceedings of the Conference on Empirical Methods in Natural
Language Processing, 2016, pp. 214-224.

[18] F. Hill, A. Bordes, S. Chopra, J. Weston, The goldilocks principle: Reading
children’s books with explicit memory representations, in: Proceedings of the
International Conference on Learning Representations, ICLR, 2016.

[19] ]J. Weston, A. Bordes, S. Chopra, A.M. Rush, B. van Merrinboer, A. Joulin, T.
Mikolov, Towards Al-complete question answering: A set of prerequisite toy
tasks, in: Proceedings of the International Conference on Learning Represen-
tations, ICLR, 2016.

[20] M. Pontiki, D. Galanis, J. Pavlopoulos, H. Papageorgiou, I. Androutsopoulos, S.
Manandhar, SemEval-2014 task 4: Aspect based sentiment analysis, in: Pro-
ceedings of the 8th International Workshop on Semantic Evaluation, SemEval
2014, 2014, pp. 27-35.

[21] ]. Duchi, H. Elad, S. Yoram, Adaptive subgradient methods for online learning
and stochastic optimization, J. Mach. Learn. Res. 12 (Jul) (2011) 2121-2159.

[22] D.Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning
to align and translate, in: Proceedings of the International Conference on
Learning Representations, ICLR, 2015.

6

8

[9


http://refhub.elsevier.com/S0167-739X(17)31328-6/sb1
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb1
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb1
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb2
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb2
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb2
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb3
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb3
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb3
http://dx.doi.org/10.1109/TMC.2017.2702670
http://dx.doi.org/10.1109/TMC.2017.2702670
http://dx.doi.org/10.1109/TMC.2017.2702670
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb5
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb5
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb5
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb6
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb6
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb6
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb6
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb6
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb7
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb7
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb7
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb7
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb7
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb8
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb8
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb8
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb8
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb8
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb9
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb9
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb9
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb9
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb9
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb9
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb9
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb10
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb10
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb10
http://arxiv.org/abs/1506.02075
http://arxiv.org/abs/1506.02075
http://arxiv.org/abs/1506.02075
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb21
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb21
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb21

888 R. Ma et al. / Future Generation Computer Systems 92 (2019) 879-888

[23] A.Kumar, O. Irsoy, P. Ondruska, M. Iyyer, ]. Bradbury, I. Gulrajani, V. Zhong, R.
Paulus, R. Socher, ]. Bradbury, R.S. Com, Ask me anything : Dynamic memory
networks for natural language processing, in: Proceedings of the International
Conference on Machine Learning, 2016, pp. 1378-1387.

[24] K.M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman, P.
Blunsom, Teaching machines to read and comprehend, in: Advances in Neural
Information Processing Systems, 2015, pp. 1693-1701.

[25] S.Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8)
(1997) 1735-1780.

[26] A.Graves, G. Wayne, I. Danihelka, Neural Turing Machines, CoRR abs/1410.5401,
2014, pp. 1-26. arXiv:1410.5401.

[27] J. Weston, S. Chopra, A. Bordes, Memory networks, in: Proceedings of the
International Conference on Learning Representations, ICLR, 2015.

[28] S. Sukhbaatar, J. Weston, R. Fergus, et al., End-to-end memory networks,
in: Advances in Neural Information Processing Systems, 2015, pp. 2440-2448.

[29] C. Xiong, S. Merity, R. Socher, Dynamic memory networks for visual and
textual question answering, in: Proceedings of the International Conference
on Machine Learning, 2016, pp. 2397-2406.

[30] K.Cho, B.van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
Y. Bengio, Learning phrase representations using RNN encoder-decoder for
statistical machine translation, in: Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, EMNLP, 2014, pp. 1724~
1734.

[31] L. Dong, F. Wei, C. Tan, D. Tang, M. Zhou, K. Xu, Adaptive recursive neural
network for target-dependent twitter sentiment classification, in: Proceedings
of the Meeting of the Association for Computational Linguistics, 2014, pp. 49—
54.

[32] T.H.Nguyen, K. Shirai, Phrasernn: Phrase recursive neural network for aspect-
based sentiment analysis, in: Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2015, pp. 2509-2514.

[33] D.Tang,B.Qin, X. Feng, T. Liu, Effective LSTMs for target-dependent sentiment
classification, in: Proceedings of the International Conference on Computa-
tional Linguistics, 2016, pp. 3298-3307.

[34] ]. Pennington, R. Socher, C.D. Manning, Glove: Global vectors for word repre-
sentation, in: Proceedings of the Conference on Empirical Methods in Natural
Language Processing, Vol. 14, 2014, pp. 1532-1543.

[35] S.Bird, E. Klein, E. Loper, Natural Language Processing with Python: Analyzing
Text with the Natural Language Toolkit, O'Reilly Media, Inc., 2009.

[36] S.M. Mohammad, S. Kiritchenko, X. Zhu, NRC-Canada: Building the state-of-
the-art in sentiment analysis of tweets, in: Joint Conference on Lexical and
Computational Semantics, 2013, pp. 321-327.

[37] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A.
Davis, J. Dean, M. Devin, S. Ghemawat, L.]J. Goodfellow, A. Harp, G. Irving, M.
Isard, Y. Jia, R.J6zefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D.G. Murray, C. Olah, M. Schuster, ]J. Shlens, B. Steiner, 1. Sutskever,
K. Talwar, P.A. Tucker, V. Vanhoucke, V. Vasudevan, F.B. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, Tensorflow: Large-
scale machine learning on heterogeneous distributed systems, 2015. Software
available from tensorflow.org.

Ruixin Ma received M.Sc. and Ph.D. from Dalian Uni-
versity of Technology (DUT), in 2003 and 2012, respec-
tively. He is currently Associate Professor at School of
Software, Dalian University of Technology, China. He has
authored/coauthored 7 books, over 10 scientific papers
international journals and conference proceedings. He has
contributed to the development of 10 copyrighted soft-
ware systems.

Kai Wang received the B.E. from Dalian University of Tech-
nology, China, in 2015. He is currently Master Student in
School of Software, Dalian University of Technology (DUT),
China. He used to participate in “Microsoft Imagine Cup
Global Student Contest 2015” and won the National Third
Prize. He is an excellent graduate student of DUT and has
been awarded several scholarships in academic excellence
and technology innovation. His research interests cover
neural language processing, deep learning and knowledge
base construction.

Tie Qiu received B.Sc. from Inner Mongolia University
of Technology, M.Sc. and Ph.D. from Dalian University of
Technology (DUT), China, in 2003, 2005 and 2012, respec-
tively. He is currently Associate Professor at School of Soft-
ware, Dalian University of Technology. He was a visiting
professor at electrical and computer engineering at lowa
State University in U.S. (Jan. 2014-Jan. 2015). He serves
as an Associate Editor of IEEE Access Journal, Computers
& Electrical Engineering (Elsevier journal) and Human-
centric Computing and Information Sciences (Springer
Journal), an Editorial Board Member of Ad Hoc Networks
(Elsevier journal) and International Journal on AdHoc Networking Systems, a Gest
Editor of Future Generation Computer Systems (Elsevier journal). He serves as
General Chair, PC Chair, Workshop Chair, Publicity Chair, Publication Chair or TPC
Member of a number of conferences. He has authored/co-authored 8 books, over
60 scientific papers in international journals and conference proceedings. He has
contributed to the development of 4 copyrighted software systems and invented
15 patents. He is a senior member of China Computer Federation (CCF) and a Senior
Member of IEEE and ACM.

Arun Kumar Sangaiah received his Ph.D. from VIT Uni-
versity and Master of Engineering from Anna University,
in 2007 and 2014, respectively. He is currently Associate
Professor at School of Computing Science and Engineering,
VIT University, Vellore, India. He was a visiting professor
at School of computer engineering at Nanhai Dongruan
Information Technology Institute in China (September.
2016-Jan. 2017). He has published more than 100 sci-
entific papers in high standard SCI journals like IEEE-
TII, IEEE-Communication Magazine, IEEE systems, IEEE-
IoT, IEEE TSC, IEEE ETC and etc. In addition he has au-
thored/edited over 8 books (Elsevier, Springer, Wiley, Taylor and Francis) and 50
journal special issues such as [EEE-Communication Magazine, IEEE-IoT, IEEE con-
sumer electronic magazine etc. His area of interest includes software engineering,
computational intelligence, wireless networks, bio-informatics, and embedded sys-
tems. Also, he was registered a one Indian patent in the area of Computational Intel-
ligence. Besides, Prof. Sangaiah is responsible for Editorial Board Member/Associate
Editor of various international SCI journals.

Dan Lin received the B.E. from Shandong Normal Univer-
sity, China, in 2015. She is currently Master Student in
School of Software, Dalian University of Technology (DUT),
China. She used to participate in “the 13th Huawei Cup
National Post-Graduate Mathematical Contest in Model-
ing” and won the National Second Prize. She is an excellent
graduate student of DUT and has been awarded several
scholarships in academic excellence and technology in-
novation. Her research interests cover data mining, deep
- learning and internet of things.

Hannan Bin Liaqat received the B.S. degree in information
technology and the M.S. degree in computer networks
from COMSATS Institute of Information Technology, La-
hore, Pakistan, in 2006 and 2009, respectively. From 2009
to 2011, he was a Lecturer in the Computer Science De-
partment with the University of Gujrat, Gujrat, Pakistan.
He received the Ph.D., degree from Dalian University of
Technology, Dalian, China, in 2016. From 2016 to now,
he worked for Department of Information Technology of
University of Gujrat as an Assistant Professor, Ph.D., and
M.Phil. supervisor. Dr. Hannan has a number of publica-
tions to his credits in international journals and conferences. He is the reviewer of
several international journals. His research interests include ad hoc social networks,
IoT, cloud computing, mobile computing, and social computing.


http://refhub.elsevier.com/S0167-739X(17)31328-6/sb24
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb24
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb24
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb24
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb24
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb25
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb25
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb25
http://arxiv.org/abs/1410.5401
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb28
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb28
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb28
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb35
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb35
http://refhub.elsevier.com/S0167-739X(17)31328-6/sb35
http://tensorflow.org

	Feature-based Compositing Memory Networks for Aspect-based Sentiment Classification in Social Internet of Things
	Introduction
	Related work
	Attention mechanism and memory networks
	Aspect-based sentiment classification

	Models
	Task definition and notation
	End-to-end memory networks
	An overview of FCMN
	Input representation and feature extracting
	Feature-based compositing memory networks
	Compositing strategies for FCMN

	Experiments
	Dataset and data preprocessing
	Training details
	Comparing to other approaches
	Comparing to DMN in different hops
	Effects of three compositing strategies
	Detailed analysis of attention mechanism in FCMN

	Conclusion
	Acknowledgments
	References


